Mail.RuПочтаМой МирОдноклассникиИгрыЗнакомстваНовостиПоискВсе проекты

Новаторы и консерваторы.

Напокупали себе новых сковородок, сначала с антипригарным тефлоновым покрытием, потом керамическую. Первой пользовались лет пять, ну ладно, состарилась. Вторая сразу начала пригорать. И мы решили, что ничего лучше старой чугунной сковородки нет, которая лет сто еще прослужит.То же самое с микроволновкой, купили... ура красота... Теперь почти не пользуемся... Оказывается она вредная, и еда в ней невкусная, проще на плите подогреть...
Нет, я конечно уже не представляю себе жизнь без стиральной машины, телефона и ноутбука. Но где-то в глубине души я консерватор. Новинки у меня всегда появляются уже в последнюю очередь, когда у других уже есть))
А вам что из старого нравится больше чем новое изобретение?
Сказочная
Тема закрытаТема в горячихТема скрытаЖалоба принята. Спасибо!Пожаловаться
ОтписатьсяПодписаться
Комментарии
116
Конь в Сапоге
утюг на углях...) и гужевой транспорт..)
СсылкаПожаловаться
СказочнаяВ ответ на Конь в Сапоге
Конь в Сапоге
утюг на углях...) и гужевой транспорт..)
СсылкаПожаловаться
круто)))
СсылкаПожаловаться
Конь в СапогеВ ответ на Сказочная
Сказочная
круто)))
СсылкаПожаловаться
История переписки2
утюги раньше тяжелые были... отглаживали замечательно... хотя и ткани были другими, сносу им не было...
СсылкаПожаловаться
СказочнаяВ ответ на Конь в Сапоге
Конь в Сапоге
утюги раньше тяжелые были... отглаживали замечательно... хотя и ткани были другими, сносу им не было...
СсылкаПожаловаться
История переписки3
Согласна. Утюг новый пластамассовый не горячий какой-то, приходиться всегда с водой гладить
СсылкаПожаловаться
Комментарий удален.Почему?
меньше слов дешевле телеграммаВ ответ на Сеньор Помидор
Комментарий удален.Почему?
История переписки2
СсылкаПожаловаться
Конь в СапогеВ ответ на Сеньор Помидор
Комментарий удален.Почему?
История переписки2
меня законы Ньютона интересуют... и число Авогадро...
СсылкаПожаловаться
Сеньор ПомидорВ ответ на Конь в Сапоге
Конь в Сапоге
утюг на углях...) и гужевой транспорт..)
СсылкаПожаловаться
(cladding) field, F1(u)′ = dF1/du, dF2(w)′ = dF2/dw –
derivatives of wave functions, u2 = a2(k2
1 − β2), w2 =
a2(β2 − k2
2) – arguments of wave functions, k1 = n1ko >
β > k2 = n2ko, ko = 2π/λo – wave numbers, respectively
in the core, cladding and outside the fibre – in vacuum,
β = 2π/λ – modal constant of propagation, λ – modal wavelength
in optical fibre, βn = β/k = neff – normalized propagation
constant, which is an effective modal refractive index,
ω = 2πf, V = u2 + w2 = a2k2
o(n2
1 ͨ2; n2
2) = (akNA)2 –
normalized frequency, (n2
1 − n2
2)1/2 = NA – numerical aperture
of optical fibre, μi – relative magnetic permeability of
i-th region, n1, n2 – refractive indices of the core and the
cladding in the fibre, generally they are not constant but are
functions of radius ni(r) or radius and angle ni(r,), m –
azimuthal modal number in circular and elliptical fibres and
transverse modal number in square and rectangular core fibre,
l – radial modal number.
For m = 1, and a fibre with circular or strip core, the
ideal Eol and Hol modes are not coupled and have only the
mentioned in their names field components in the direction
of propagation. Particular form of Eq. (1), and the kind of
wave functions F depend on the fibre geometry, mainly the
core. We assume that the fibre supports hybrid modes HE,
EH or, in approximation, LP modes of linear polarization [3].
Two expressions in parentheses on the left side of Eq. (1)
represent modes of characteristics combined with magnetic
permeability (without charges on the boundary, Ho1 modes
in cylindrical fibre) and core/cladding refractions. Right side
of the equation couples the modes into a hybrid form of both
fields E and H in the direction of propagation. Wave functions
F have to possess a property of mutual transformation
between various kinds of tailored optical fibres. Strip
and cylindrical cores are special cases of elliptical cores, etc.
Part of modal power of m-th mode Pm is carried in the core
Pm
1 , and the other part is in the cladding Pm
2 . The expression
η(r) = P1/Pm, where Pm = P1 + P2 is a modal power
profile η = (neffng − n2
2)/NA2 [51].
In the angular coordinates – longitudinal axial, radial and
azimuthal (z, r, φ;) for a quasi-ideal cylindrical fibre, the wave
functions F are quasi-periodic and quasi-exponential Bessel
functions Jm(u) and Km(w), and the eigenequation
СсылкаПожаловаться
ИнКа (вполне себе Баба Яга(с))
ничо старого мне нинравицо больше, чем новое... )))))))))))))))
со мной че-та нитак?.. )))))
СсылкаПожаловаться
Сеньор ПомидорВ ответ на ИнКа (вполне себе Баба Яга(с))
ИнКа (вполне себе Баба Яга(с))
ничо старого мне нинравицо больше, чем новое... )))))))))))))))
со мной че-та нитак?.. )))))
СсылкаПожаловаться
(cladding) field, F1(u)′ = dF1/du, dF2(w)′ = dF2/dw –
derivatives of wave functions, u2 = a2(k2
1 − β2), w2 =
a2(β2 − k2
2) – arguments of wave functions, k1 = n1ko >
β > k2 = n2ko, ko = 2π/λo – wave numbers, respectively
in the core, cladding and outside the fibre – in vacuum,
β = 2π/λ – modal constant of propagation, λ – modal wavelength
in optical fibre, βn = β/k = neff – normalized propagation
constant, which is an effective modal refractive index,
ω = 2πf, V = u2 + w2 = a2k2
o(n2
1 ͨ2; n2
2) = (akNA)2 –
normalized frequency, (n2
1 − n2
2)1/2 = NA – numerical aperture
of optical fibre, μi – relative magnetic permeability of
i-th region, n1, n2 – refractive indices of the core and the
cladding in the fibre, generally they are not constant but are
functions of radius ni(r) or radius and angle ni(r,), m –
azimuthal modal number in circular and elliptical fibres and
transverse modal number in square and rectangular core fibre,
l – radial modal number.
For m = 1, and a fibre with circular or strip core, the
ideal Eol and Hol modes are not coupled and have only the
mentioned in their names field components in the direction
of propagation. Particular form of Eq. (1), and the kind of
wave functions F depend on the fibre geometry, mainly the
core. We assume that the fibre supports hybrid modes HE,
EH or, in approximation, LP modes of linear polarization [3].
Two expressions in parentheses on the left side of Eq. (1)
represent modes of characteristics combined with magnetic
permeability (without charges on the boundary, Ho1 modes
in cylindrical fibre) and core/cladding refractions. Right side
of the equation couples the modes into a hybrid form of both
fields E and H in the direction of propagation. Wave functions
F have to possess a property of mutual transformation
between various kinds of tailored optical fibres. Strip
and cylindrical cores are special cases of elliptical cores, etc.
Part of modal power of m-th mode Pm is carried in the core
Pm
1 , and the other part is in the cladding Pm
2 . The expression
η(r) = P1/Pm, where Pm = P1 + P2 is a modal power
profile η = (neffng − n2
2)/NA2 [51].
In the angular coordinates – longitudinal axial, radial and
azimuthal (z, r, φ;) for a quasi-ideal cylindrical fibre, the wave
functions F are quasi-periodic and quasi-exponential Bessel
functions Jm(u) and Km(w), and the eigenequation
СсылкаПожаловаться
меньше слов дешевле телеграммаВ ответ на Сеньор Помидор
Сеньор Помидор
(cladding) field, F1(u)′ = dF1/du, dF2(w)′ = dF2/dw –
derivatives of wave functions, u2 = a2(k2
1 − β2), w2 =
a2(β2 − k2
2) – arguments of wave functions, k1 = n1ko >
β > k2 = n2ko, ko = 2π/λo – wave numbers, respectively
in the core, cladding and outside the fibre – in vacuum,
β = 2π/λ – modal constant of propagation, λ – modal wavelength
in optical fibre, βn = β/k = neff – normalized propagation
constant, which is an effective modal refractive index,
ω = 2πf, V = u2 + w2 = a2k2
o(n2
1 ͨ2; n2
2) = (akNA)2 –
normalized frequency, (n2
1 − n2
2)1/2 = NA – numerical aperture
of optical fibre, μi – relative magnetic permeability of
i-th region, n1, n2 – refractive indices of the core and the
cladding in the fibre, generally they are not constant but are
functions of radius ni(r) or radius and angle ni(r,), m –
azimuthal modal number in circular and elliptical fibres and
transverse modal number in square and rectangular core fibre,
l – radial modal number.
For m = 1, and a fibre with circular or strip core, the
ideal Eol and Hol modes are not coupled and have only the
mentioned in their names field components in the direction
of propagation. Particular form of Eq. (1), and the kind of
wave functions F depend on the fibre geometry, mainly the
core. We assume that the fibre supports hybrid modes HE,
EH or, in approximation, LP modes of linear polarization [3].
Two expressions in parentheses on the left side of Eq. (1)
represent modes of characteristics combined with magnetic
permeability (without charges on the boundary, Ho1 modes
in cylindrical fibre) and core/cladding refractions. Right side
of the equation couples the modes into a hybrid form of both
fields E and H in the direction of propagation. Wave functions
F have to possess a property of mutual transformation
between various kinds of tailored optical fibres. Strip
and cylindrical cores are special cases of elliptical cores, etc.
Part of modal power of m-th mode Pm is carried in the core
Pm
1 , and the other part is in the cladding Pm
2 . The expression
η(r) = P1/Pm, where Pm = P1 + P2 is a modal power
profile η = (neffng − n2
2)/NA2 [51].
In the angular coordinates – longitudinal axial, radial and
azimuthal (z, r, φ;) for a quasi-ideal cylindrical fibre, the wave
functions F are quasi-periodic and quasi-exponential Bessel
functions Jm(u) and Km(w), and the eigenequation
СсылкаПожаловаться
История переписки2
СсылкаПожаловаться
Severus Snape
Без микроволновки точно уже не смогу =Р
СсылкаПожаловаться
Сеньор ПомидорВ ответ на Severus Snape
Severus Snape
Без микроволновки точно уже не смогу =Р
СсылкаПожаловаться
(cladding) field, F1(u)′ = dF1/du, dF2(w)′ = dF2/dw –
derivatives of wave functions, u2 = a2(k2
1 − β2), w2 =
a2(β2 − k2
2) – arguments of wave functions, k1 = n1ko >
β > k2 = n2ko, ko = 2π/λo – wave numbers, respectively
in the core, cladding and outside the fibre – in vacuum,
β = 2π/λ – modal constant of propagation, λ – modal wavelength
in optical fibre, βn = β/k = neff – normalized propagation
constant, which is an effective modal refractive index,
ω = 2πf, V = u2 + w2 = a2k2
o(n2
1 ͨ2; n2
2) = (akNA)2 –
normalized frequency, (n2
1 − n2
2)1/2 = NA – numerical aperture
of optical fibre, μi – relative magnetic permeability of
i-th region, n1, n2 – refractive indices of the core and the
cladding in the fibre, generally they are not constant but are
functions of radius ni(r) or radius and angle ni(r,), m –
azimuthal modal number in circular and elliptical fibres and
transverse modal number in square and rectangular core fibre,
l – radial modal number.
For m = 1, and a fibre with circular or strip core, the
ideal Eol and Hol modes are not coupled and have only the
mentioned in their names field components in the direction
of propagation. Particular form of Eq. (1), and the kind of
wave functions F depend on the fibre geometry, mainly the
core. We assume that the fibre supports hybrid modes HE,
EH or, in approximation, LP modes of linear polarization [3].
Two expressions in parentheses on the left side of Eq. (1)
represent modes of characteristics combined with magnetic
permeability (without charges on the boundary, Ho1 modes
in cylindrical fibre) and core/cladding refractions. Right side
of the equation couples the modes into a hybrid form of both
fields E and H in the direction of propagation. Wave functions
F have to possess a property of mutual transformation
between various kinds of tailored optical fibres. Strip
and cylindrical cores are special cases of elliptical cores, etc.
Part of modal power of m-th mode Pm is carried in the core
Pm
1 , and the other part is in the cladding Pm
2 . The expression
η(r) = P1/Pm, where Pm = P1 + P2 is a modal power
profile η = (neffng − n2
2)/NA2 [51].
In the angular coordinates – longitudinal axial, radial and
azimuthal (z, r, φ;) for a quasi-ideal cylindrical fibre, the wave
functions F are quasi-periodic and quasi-exponential Bessel
functions Jm(u) and Km(w), and the eigenequation
СсылкаПожаловаться
меньше слов дешевле телеграммаВ ответ на Сеньор Помидор
Сеньор Помидор
(cladding) field, F1(u)′ = dF1/du, dF2(w)′ = dF2/dw –
derivatives of wave functions, u2 = a2(k2
1 − β2), w2 =
a2(β2 − k2
2) – arguments of wave functions, k1 = n1ko >
β > k2 = n2ko, ko = 2π/λo – wave numbers, respectively
in the core, cladding and outside the fibre – in vacuum,
β = 2π/λ – modal constant of propagation, λ – modal wavelength
in optical fibre, βn = β/k = neff – normalized propagation
constant, which is an effective modal refractive index,
ω = 2πf, V = u2 + w2 = a2k2
o(n2
1 ͨ2; n2
2) = (akNA)2 –
normalized frequency, (n2
1 − n2
2)1/2 = NA – numerical aperture
of optical fibre, μi – relative magnetic permeability of
i-th region, n1, n2 – refractive indices of the core and the
cladding in the fibre, generally they are not constant but are
functions of radius ni(r) or radius and angle ni(r,), m –
azimuthal modal number in circular and elliptical fibres and
transverse modal number in square and rectangular core fibre,
l – radial modal number.
For m = 1, and a fibre with circular or strip core, the
ideal Eol and Hol modes are not coupled and have only the
mentioned in their names field components in the direction
of propagation. Particular form of Eq. (1), and the kind of
wave functions F depend on the fibre geometry, mainly the
core. We assume that the fibre supports hybrid modes HE,
EH or, in approximation, LP modes of linear polarization [3].
Two expressions in parentheses on the left side of Eq. (1)
represent modes of characteristics combined with magnetic
permeability (without charges on the boundary, Ho1 modes
in cylindrical fibre) and core/cladding refractions. Right side
of the equation couples the modes into a hybrid form of both
fields E and H in the direction of propagation. Wave functions
F have to possess a property of mutual transformation
between various kinds of tailored optical fibres. Strip
and cylindrical cores are special cases of elliptical cores, etc.
Part of modal power of m-th mode Pm is carried in the core
Pm
1 , and the other part is in the cladding Pm
2 . The expression
η(r) = P1/Pm, where Pm = P1 + P2 is a modal power
profile η = (neffng − n2
2)/NA2 [51].
In the angular coordinates – longitudinal axial, radial and
azimuthal (z, r, φ;) for a quasi-ideal cylindrical fibre, the wave
functions F are quasi-periodic and quasi-exponential Bessel
functions Jm(u) and Km(w), and the eigenequation
СсылкаПожаловаться
История переписки2
потерпи, всё будет карашо!
СсылкаПожаловаться
белая пушистая
у меня так в одежде.. все уже закончат это носить.. а тут я....
СсылкаПожаловаться
Сеньор ПомидорВ ответ на белая пушистая
белая пушистая
у меня так в одежде.. все уже закончат это носить.. а тут я....
СсылкаПожаловаться
(cladding) field, F1(u)′ = dF1/du, dF2(w)′ = dF2/dw –
derivatives of wave functions, u2 = a2(k2
1 − β2), w2 =
a2(β2 − k2
2) – arguments of wave functions, k1 = n1ko >
β > k2 = n2ko, ko = 2π/λo – wave numbers, respectively
in the core, cladding and outside the fibre – in vacuum,
β = 2π/λ – modal constant of propagation, λ – modal wavelength
in optical fibre, βn = β/k = neff – normalized propagation
constant, which is an effective modal refractive index,
ω = 2πf, V = u2 + w2 = a2k2
o(n2
1 ͨ2; n2
2) = (akNA)2 –
normalized frequency, (n2
1 − n2
2)1/2 = NA – numerical aperture
of optical fibre, μi – relative magnetic permeability of
i-th region, n1, n2 – refractive indices of the core and the
cladding in the fibre, generally they are not constant but are
functions of radius ni(r) or radius and angle ni(r,), m –
azimuthal modal number in circular and elliptical fibres and
transverse modal number in square and rectangular core fibre,
l – radial modal number.
For m = 1, and a fibre with circular or strip core, the
ideal Eol and Hol modes are not coupled and have only the
mentioned in their names field components in the direction
of propagation. Particular form of Eq. (1), and the kind of
wave functions F depend on the fibre geometry, mainly the
core. We assume that the fibre supports hybrid modes HE,
EH or, in approximation, LP modes of linear polarization [3].
Two expressions in parentheses on the left side of Eq. (1)
represent modes of characteristics combined with magnetic
permeability (without charges on the boundary, Ho1 modes
in cylindrical fibre) and core/cladding refractions. Right side
of the equation couples the modes into a hybrid form of both
fields E and H in the direction of propagation. Wave functions
F have to possess a property of mutual transformation
between various kinds of tailored optical fibres. Strip
and cylindrical cores are special cases of elliptical cores, etc.
Part of modal power of m-th mode Pm is carried in the core
Pm
1 , and the other part is in the cladding Pm
2 . The expression
η(r) = P1/Pm, where Pm = P1 + P2 is a modal power
profile η = (neffng − n2
2)/NA2 [51].
In the angular coordinates – longitudinal axial, radial and
azimuthal (z, r, φ;) for a quasi-ideal cylindrical fibre, the wave
functions F are quasi-periodic and quasi-exponential Bessel
functions Jm(u) and Km(w), and the eigenequation
СсылкаПожаловаться
меньше слов дешевле телеграммаВ ответ на Сеньор Помидор
Сеньор Помидор
(cladding) field, F1(u)′ = dF1/du, dF2(w)′ = dF2/dw –
derivatives of wave functions, u2 = a2(k2
1 − β2), w2 =
a2(β2 − k2
2) – arguments of wave functions, k1 = n1ko >
β > k2 = n2ko, ko = 2π/λo – wave numbers, respectively
in the core, cladding and outside the fibre – in vacuum,
β = 2π/λ – modal constant of propagation, λ – modal wavelength
in optical fibre, βn = β/k = neff – normalized propagation
constant, which is an effective modal refractive index,
ω = 2πf, V = u2 + w2 = a2k2
o(n2
1 ͨ2; n2
2) = (akNA)2 –
normalized frequency, (n2
1 − n2
2)1/2 = NA – numerical aperture
of optical fibre, μi – relative magnetic permeability of
i-th region, n1, n2 – refractive indices of the core and the
cladding in the fibre, generally they are not constant but are
functions of radius ni(r) or radius and angle ni(r,), m –
azimuthal modal number in circular and elliptical fibres and
transverse modal number in square and rectangular core fibre,
l – radial modal number.
For m = 1, and a fibre with circular or strip core, the
ideal Eol and Hol modes are not coupled and have only the
mentioned in their names field components in the direction
of propagation. Particular form of Eq. (1), and the kind of
wave functions F depend on the fibre geometry, mainly the
core. We assume that the fibre supports hybrid modes HE,
EH or, in approximation, LP modes of linear polarization [3].
Two expressions in parentheses on the left side of Eq. (1)
represent modes of characteristics combined with magnetic
permeability (without charges on the boundary, Ho1 modes
in cylindrical fibre) and core/cladding refractions. Right side
of the equation couples the modes into a hybrid form of both
fields E and H in the direction of propagation. Wave functions
F have to possess a property of mutual transformation
between various kinds of tailored optical fibres. Strip
and cylindrical cores are special cases of elliptical cores, etc.
Part of modal power of m-th mode Pm is carried in the core
Pm
1 , and the other part is in the cladding Pm
2 . The expression
η(r) = P1/Pm, where Pm = P1 + P2 is a modal power
profile η = (neffng − n2
2)/NA2 [51].
In the angular coordinates – longitudinal axial, radial and
azimuthal (z, r, φ;) for a quasi-ideal cylindrical fibre, the wave
functions F are quasi-periodic and quasi-exponential Bessel
functions Jm(u) and Km(w), and the eigenequation
СсылкаПожаловаться
История переписки2
СсылкаПожаловаться
Марина
тему с мультиваркой я так и не просекла. стоит у меня, практически без дела(((
СсылкаПожаловаться
Сеньор ПомидорВ ответ на Марина
Марина
тему с мультиваркой я так и не просекла. стоит у меня, практически без дела(((
СсылкаПожаловаться
(cladding) field, F1(u)′ = dF1/du, dF2(w)′ = dF2/dw –
derivatives of wave functions, u2 = a2(k2
1 − β2), w2 =
a2(β2 − k2
2) – arguments of wave functions, k1 = n1ko >
β > k2 = n2ko, ko = 2π/λo – wave numbers, respectively
in the core, cladding and outside the fibre – in vacuum,
β = 2π/λ – modal constant of propagation, λ – modal wavelength
in optical fibre, βn = β/k = neff – normalized propagation
constant, which is an effective modal refractive index,
ω = 2πf, V = u2 + w2 = a2k2
o(n2
1 ͨ2; n2
2) = (akNA)2 –
normalized frequency, (n2
1 − n2
2)1/2 = NA – numerical aperture
of optical fibre, μi – relative magnetic permeability of
i-th region, n1, n2 – refractive indices of the core and the
cladding in the fibre, generally they are not constant but are
functions of radius ni(r) or radius and angle ni(r,), m –
azimuthal modal number in circular and elliptical fibres and
transverse modal number in square and rectangular core fibre,
l – radial modal number.
For m = 1, and a fibre with circular or strip core, the
ideal Eol and Hol modes are not coupled and have only the
mentioned in their names field components in the direction
of propagation. Particular form of Eq. (1), and the kind of
wave functions F depend on the fibre geometry, mainly the
core. We assume that the fibre supports hybrid modes HE,
EH or, in approximation, LP modes of linear polarization [3].
Two expressions in parentheses on the left side of Eq. (1)
represent modes of characteristics combined with magnetic
permeability (without charges on the boundary, Ho1 modes
in cylindrical fibre) and core/cladding refractions. Right side
of the equation couples the modes into a hybrid form of both
fields E and H in the direction of propagation. Wave functions
F have to possess a property of mutual transformation
between various kinds of tailored optical fibres. Strip
and cylindrical cores are special cases of elliptical cores, etc.
Part of modal power of m-th mode Pm is carried in the core
Pm
1 , and the other part is in the cladding Pm
2 . The expression
η(r) = P1/Pm, where Pm = P1 + P2 is a modal power
profile η = (neffng − n2
2)/NA2 [51].
In the angular coordinates – longitudinal axial, radial and
azimuthal (z, r, φ;) for a quasi-ideal cylindrical fibre, the wave
functions F are quasi-periodic and quasi-exponential Bessel
functions Jm(u) and Km(w), and the eigenequation
СсылкаПожаловаться
меньше слов дешевле телеграммаВ ответ на Сеньор Помидор
Сеньор Помидор
(cladding) field, F1(u)′ = dF1/du, dF2(w)′ = dF2/dw –
derivatives of wave functions, u2 = a2(k2
1 − β2), w2 =
a2(β2 − k2
2) – arguments of wave functions, k1 = n1ko >
β > k2 = n2ko, ko = 2π/λo – wave numbers, respectively
in the core, cladding and outside the fibre – in vacuum,
β = 2π/λ – modal constant of propagation, λ – modal wavelength
in optical fibre, βn = β/k = neff – normalized propagation
constant, which is an effective modal refractive index,
ω = 2πf, V = u2 + w2 = a2k2
o(n2
1 ͨ2; n2
2) = (akNA)2 –
normalized frequency, (n2
1 − n2
2)1/2 = NA – numerical aperture
of optical fibre, μi – relative magnetic permeability of
i-th region, n1, n2 – refractive indices of the core and the
cladding in the fibre, generally they are not constant but are
functions of radius ni(r) or radius and angle ni(r,), m –
azimuthal modal number in circular and elliptical fibres and
transverse modal number in square and rectangular core fibre,
l – radial modal number.
For m = 1, and a fibre with circular or strip core, the
ideal Eol and Hol modes are not coupled and have only the
mentioned in their names field components in the direction
of propagation. Particular form of Eq. (1), and the kind of
wave functions F depend on the fibre geometry, mainly the
core. We assume that the fibre supports hybrid modes HE,
EH or, in approximation, LP modes of linear polarization [3].
Two expressions in parentheses on the left side of Eq. (1)
represent modes of characteristics combined with magnetic
permeability (without charges on the boundary, Ho1 modes
in cylindrical fibre) and core/cladding refractions. Right side
of the equation couples the modes into a hybrid form of both
fields E and H in the direction of propagation. Wave functions
F have to possess a property of mutual transformation
between various kinds of tailored optical fibres. Strip
and cylindrical cores are special cases of elliptical cores, etc.
Part of modal power of m-th mode Pm is carried in the core
Pm
1 , and the other part is in the cladding Pm
2 . The expression
η(r) = P1/Pm, where Pm = P1 + P2 is a modal power
profile η = (neffng − n2
2)/NA2 [51].
In the angular coordinates – longitudinal axial, radial and
azimuthal (z, r, φ;) for a quasi-ideal cylindrical fibre, the wave
functions F are quasi-periodic and quasi-exponential Bessel
functions Jm(u) and Km(w), and the eigenequation
СсылкаПожаловаться
История переписки2
СсылкаПожаловаться
ИнКа (вполне себе Баба Яга(с))В ответ на Марина
Марина
тему с мультиваркой я так и не просекла. стоит у меня, практически без дела(((
СсылкаПожаловаться
кашки она а-фи-генские варит....)))))
СсылкаПожаловаться
ИнКа (вполне себе Баба Яга(с))
кашки она а-фи-генские варит....)))))
СсылкаПожаловаться
История переписки2
ну, варю раз в неделю рис или гречку... Мы каши не особенно едим, ребенку достаточно в маленькой кастрюльке свежую сварить. в общем, не пошла она у меня как-то...
СсылкаПожаловаться
ИнКа (вполне себе Баба Яга(с))В ответ на Марина
Марина
ну, варю раз в неделю рис или гречку... Мы каши не особенно едим, ребенку достаточно в маленькой кастрюльке свежую сварить. в общем, не пошла она у меня как-то...
СсылкаПожаловаться
История переписки3
да у нас тоже....)))))))
жаркое и каши... все.. ))))))
СсылкаПожаловаться
СказочнаяВ ответ на Марина
Марина
тему с мультиваркой я так и не просекла. стоит у меня, практически без дела(((
СсылкаПожаловаться
отдай мне, я как раз мультиварку хочу))
СсылкаПожаловаться
МаринаВ ответ на Сказочная
Сказочная
отдай мне, я как раз мультиварку хочу))
СсылкаПожаловаться
История переписки2
не могу, муж дарил)))) теперь я всячески демонстрирую, какая это полезная вещь в хозяйстве, а то больше не подарит ничего такого)))))))))) исправно раз в неделю варю кашу и ему оттуда накладываю, и по выходным делаю паровые котлетки детю, хотя по-честному без мультиварки все это прекрасно можно делать))))))
СсылкаПожаловаться
Подпишитесь на нас
Рассылка Леди Mail.ru