Дорогие пользователи! С 15 декабря Форум Леди закрыт для общения. Выражаем благодарность всем нашим пользователям, принимавшим участие в дискуссиях и горячих спорах. Редакция сосредоточится на выпуске увлекательных статей и новостей, которые вы сможете обсудить в комментариях. Не пропустите!

Новаторы и консерваторы.

Напокупали себе новых сковородок, сначала с антипригарным тефлоновым покрытием, потом керамическую. Первой пользовались лет пять, ну ладно, состарилась. Вторая сразу начала пригорать. И мы решили, что ничего лучше старой чугунной сковородки нет, которая лет сто еще прослужит.То же самое с микроволновкой, купили... ура красота... Теперь почти не пользуемся... Оказывается она вредная, и еда в ней невкусная, проще на плите подогреть...
Нет, я конечно уже не представляю себе жизнь без стиральной машины, телефона и ноутбука. Но где-то в глубине души я консерватор. Новинки у меня всегда появляются уже в последнюю очередь, когда у других уже есть))
А вам что из старого нравится больше чем новое изобретение?
Милочка Иванова
Тема закрытаТема в горячихТема скрыта
Комментарии
116
Маргарита Мироничева
Люблю кофе молоть в ручной кофемолке, старенькая уже, хотя есть и кофемашина и просто электрическая, но получаю удовольствие от процесса, и кофе, когда сразу сваришь, кажется каким-то особенно вкусным))
Комментарий удален.Почему?
меньше слов дешевле телеграммаВ ответ на Сеньор Помидор
Комментарий удален.Почему?
История переписки2
Милочка ИвановаВ ответ на Маргарита Мироничева
Маргарита Мироничева
Люблю кофе молоть в ручной кофемолке, старенькая уже, хотя есть и кофемашина и просто электрическая, но получаю удовольствие от процесса, и кофе, когда сразу сваришь, кажется каким-то особенно вкусным))
СсылкаПожаловаться
вот кстати тоже гурманы говорят что ручной кофе вкуснее
Маргарита МироничеваВ ответ на Милочка Иванова
Милочка Иванова
вот кстати тоже гурманы говорят что ручной кофе вкуснее
СсылкаПожаловаться
История переписки2
Я с ними согласна, хотя не такой уж и гурман)) Попробуйте сами, думаю понравится.
Милочка ИвановаВ ответ на Маргарита Мироничева
Маргарита Мироничева
Я с ними согласна, хотя не такой уж и гурман)) Попробуйте сами, думаю понравится.
СсылкаПожаловаться
История переписки3
я его и так руками варю, у меня кофеварки нет
Маргарита МироничеваВ ответ на Милочка Иванова
Милочка Иванова
я его и так руками варю, у меня кофеварки нет
СсылкаПожаловаться
История переписки4
Так Вы же уже готовый молотый варите, а когда сам намолол и сразу сварил, тут уж цимус другой))
Марина ГорбуноваВ ответ на Маргарита Мироничева
Маргарита Мироничева
Так Вы же уже готовый молотый варите, а когда сам намолол и сразу сварил, тут уж цимус другой))
СсылкаПожаловаться
История переписки5
А зерна дополнительно обжариваете?
Маргарита МироничеваВ ответ на Марина Горбунова
Марина Горбунова
А зерна дополнительно обжариваете?
СсылкаПожаловаться
История переписки6
Нет, не обжариваю.Уже готовый смолотый прогреваю, вернее подсушиваю, в турке, а потом уже воду добавляю.
меньше слов дешевле телеграмма
переходим на хозяйственное мыло...и дешево-сердито и полезно
меньше слов дешевле телеграмма
переходим на хозяйственное мыло...и дешево-сердито и полезно
СсылкаПожаловаться
(cladding) field, F1(u)′ = dF1/du, dF2(w)′ = dF2/dw –
derivatives of wave functions, u2 = a2(k2
1 − β2), w2 =
a2(β2 − k2
2) – arguments of wave functions, k1 = n1ko >
β > k2 = n2ko, ko = 2π/λo – wave numbers, respectively
in the core, cladding and outside the fibre – in vacuum,
β = 2π/λ – modal constant of propagation, λ – modal wavelength
in optical fibre, βn = β/k = neff – normalized propagation
constant, which is an effective modal refractive index,
ω = 2πf, V = u2 + w2 = a2k2
o(n2
1 ͨ2; n2
2) = (akNA)2 –
normalized frequency, (n2
1 − n2
2)1/2 = NA – numerical aperture
of optical fibre, μi – relative magnetic permeability of
i-th region, n1, n2 – refractive indices of the core and the
cladding in the fibre, generally they are not constant but are
functions of radius ni(r) or radius and angle ni(r,), m –
azimuthal modal number in circular and elliptical fibres and
transverse modal number in square and rectangular core fibre,
l – radial modal number.
For m = 1, and a fibre with circular or strip core, the
ideal Eol and Hol modes are not coupled and have only the
mentioned in their names field components in the direction
of propagation. Particular form of Eq. (1), and the kind of
wave functions F depend on the fibre geometry, mainly the
core. We assume that the fibre supports hybrid modes HE,
EH or, in approximation, LP modes of linear polarization [3].
Two expressions in parentheses on the left side of Eq. (1)
represent modes of characteristics combined with magnetic
permeability (without charges on the boundary, Ho1 modes
in cylindrical fibre) and core/cladding refractions. Right side
of the equation couples the modes into a hybrid form of both
fields E and H in the direction of propagation. Wave functions
F have to possess a property of mutual transformation
between various kinds of tailored optical fibres. Strip
and cylindrical cores are special cases of elliptical cores, etc.
Part of modal power of m-th mode Pm is carried in the core
Pm
1 , and the other part is in the cladding Pm
2 . The expression
η(r) = P1/Pm, where Pm = P1 + P2 is a modal power
profile η = (neffng − n2
2)/NA2 [51].
In the angular coordinates – longitudinal axial, radial and
azimuthal (z, r, φ;) for a quasi-ideal cylindrical fibre, the wave
functions F are quasi-periodic and quasi-exponential Bessel
functions Jm(u) and Km(w), and the eigenequation
меньше слов дешевле телеграммаВ ответ на Сеньор Помидор
Сеньор Помидор
(cladding) field, F1(u)′ = dF1/du, dF2(w)′ = dF2/dw –
derivatives of wave functions, u2 = a2(k2
1 − β2), w2 =
a2(β2 − k2
2) – arguments of wave functions, k1 = n1ko >
β > k2 = n2ko, ko = 2π/λo – wave numbers, respectively
in the core, cladding and outside the fibre – in vacuum,
β = 2π/λ – modal constant of propagation, λ – modal wavelength
in optical fibre, βn = β/k = neff – normalized propagation
constant, which is an effective modal refractive index,
ω = 2πf, V = u2 + w2 = a2k2
o(n2
1 ͨ2; n2
2) = (akNA)2 –
normalized frequency, (n2
1 − n2
2)1/2 = NA – numerical aperture
of optical fibre, μi – relative magnetic permeability of
i-th region, n1, n2 – refractive indices of the core and the
cladding in the fibre, generally they are not constant but are
functions of radius ni(r) or radius and angle ni(r,), m –
azimuthal modal number in circular and elliptical fibres and
transverse modal number in square and rectangular core fibre,
l – radial modal number.
For m = 1, and a fibre with circular or strip core, the
ideal Eol and Hol modes are not coupled and have only the
mentioned in their names field components in the direction
of propagation. Particular form of Eq. (1), and the kind of
wave functions F depend on the fibre geometry, mainly the
core. We assume that the fibre supports hybrid modes HE,
EH or, in approximation, LP modes of linear polarization [3].
Two expressions in parentheses on the left side of Eq. (1)
represent modes of characteristics combined with magnetic
permeability (without charges on the boundary, Ho1 modes
in cylindrical fibre) and core/cladding refractions. Right side
of the equation couples the modes into a hybrid form of both
fields E and H in the direction of propagation. Wave functions
F have to possess a property of mutual transformation
between various kinds of tailored optical fibres. Strip
and cylindrical cores are special cases of elliptical cores, etc.
Part of modal power of m-th mode Pm is carried in the core
Pm
1 , and the other part is in the cladding Pm
2 . The expression
η(r) = P1/Pm, where Pm = P1 + P2 is a modal power
profile η = (neffng − n2
2)/NA2 [51].
In the angular coordinates – longitudinal axial, radial and
azimuthal (z, r, φ;) for a quasi-ideal cylindrical fibre, the wave
functions F are quasi-periodic and quasi-exponential Bessel
functions Jm(u) and Km(w), and the eigenequation
СсылкаПожаловаться
История переписки2
Матильда Аскольдовна КирпичеваВ ответ на меньше слов дешевле телеграмма
меньше слов дешевле телеграмма
переходим на хозяйственное мыло...и дешево-сердито и полезно
СсылкаПожаловаться
Ты его варишь или жаришь?
меньше слов дешевле телеграммаВ ответ на Матильда Аскольдовна Кирпичева
Матильда Аскольдовна Кирпичева
Ты его варишь или жаришь?
СсылкаПожаловаться
История переписки2
В Русской печи подогреваю!
Марина ГорбуноваВ ответ на Матильда Аскольдовна Кирпичева
Матильда Аскольдовна Кирпичева
Ты его варишь или жаришь?
СсылкаПожаловаться
История переписки2
Мыло варят, блин!!!
Матильда Аскольдовна КирпичеваВ ответ на Марина Горбунова
Марина Горбунова
Мыло варят, блин!!!
СсылкаПожаловаться
История переписки3
А где гарантия, что не тушат или запекают?
Марина ГорбуноваВ ответ на Матильда Аскольдовна Кирпичева
Матильда Аскольдовна Кирпичева
А где гарантия, что не тушат или запекают?
СсылкаПожаловаться
История переписки4
Века опыта!
Сеньор Помидор
(cladding) field, F1(u)′ = dF1/du, dF2(w)′ = dF2/dw –
derivatives of wave functions, u2 = a2(k2
1 − β2), w2 =
a2(β2 − k2
2) – arguments of wave functions, k1 = n1ko >
β > k2 = n2ko, ko = 2π/λo – wave numbers, respectively
in the core, cladding and outside the fibre – in vacuum,
β = 2π/λ – modal constant of propagation, λ – modal wavelength
in optical fibre, βn = β/k = neff – normalized propagation
constant, which is an effective modal refractive index,
ω = 2πf, V = u2 + w2 = a2k2
o(n2
1 ͨ2; n2
2) = (akNA)2 –
normalized frequency, (n2
1 − n2
2)1/2 = NA – numerical aperture
of optical fibre, μi – relative magnetic permeability of
i-th region, n1, n2 – refractive indices of the core and the
cladding in the fibre, generally they are not constant but are
functions of radius ni(r) or radius and angle ni(r,), m –
azimuthal modal number in circular and elliptical fibres and
transverse modal number in square and rectangular core fibre,
l – radial modal number.
For m = 1, and a fibre with circular or strip core, the
ideal Eol and Hol modes are not coupled and have only the
mentioned in their names field components in the direction
of propagation. Particular form of Eq. (1), and the kind of
wave functions F depend on the fibre geometry, mainly the
core. We assume that the fibre supports hybrid modes HE,
EH or, in approximation, LP modes of linear polarization [3].
Two expressions in parentheses on the left side of Eq. (1)
represent modes of characteristics combined with magnetic
permeability (without charges on the boundary, Ho1 modes
in cylindrical fibre) and core/cladding refractions. Right side
of the equation couples the modes into a hybrid form of both
fields E and H in the direction of propagation. Wave functions
F have to possess a property of mutual transformation
between various kinds of tailored optical fibres. Strip
and cylindrical cores are special cases of elliptical cores, etc.
Part of modal power of m-th mode Pm is carried in the core
Pm
1 , and the other part is in the cladding Pm
2 . The expression
η(r) = P1/Pm, where Pm = P1 + P2 is a modal power
profile η = (neffng − n2
2)/NA2 [51].
In the angular coordinates – longitudinal axial, radial and
azimuthal (z, r, φ;) for a quasi-ideal cylindrical fibre, the wave
functions F are quasi-periodic and quasi-exponential Bessel
functions Jm(u) and Km(w), and the eigenequation
меньше слов дешевле телеграммаВ ответ на Сеньор Помидор
Сеньор Помидор
(cladding) field, F1(u)′ = dF1/du, dF2(w)′ = dF2/dw –
derivatives of wave functions, u2 = a2(k2
1 − β2), w2 =
a2(β2 − k2
2) – arguments of wave functions, k1 = n1ko >
β > k2 = n2ko, ko = 2π/λo – wave numbers, respectively
in the core, cladding and outside the fibre – in vacuum,
β = 2π/λ – modal constant of propagation, λ – modal wavelength
in optical fibre, βn = β/k = neff – normalized propagation
constant, which is an effective modal refractive index,
ω = 2πf, V = u2 + w2 = a2k2
o(n2
1 ͨ2; n2
2) = (akNA)2 –
normalized frequency, (n2
1 − n2
2)1/2 = NA – numerical aperture
of optical fibre, μi – relative magnetic permeability of
i-th region, n1, n2 – refractive indices of the core and the
cladding in the fibre, generally they are not constant but are
functions of radius ni(r) or radius and angle ni(r,), m –
azimuthal modal number in circular and elliptical fibres and
transverse modal number in square and rectangular core fibre,
l – radial modal number.
For m = 1, and a fibre with circular or strip core, the
ideal Eol and Hol modes are not coupled and have only the
mentioned in their names field components in the direction
of propagation. Particular form of Eq. (1), and the kind of
wave functions F depend on the fibre geometry, mainly the
core. We assume that the fibre supports hybrid modes HE,
EH or, in approximation, LP modes of linear polarization [3].
Two expressions in parentheses on the left side of Eq. (1)
represent modes of characteristics combined with magnetic
permeability (without charges on the boundary, Ho1 modes
in cylindrical fibre) and core/cladding refractions. Right side
of the equation couples the modes into a hybrid form of both
fields E and H in the direction of propagation. Wave functions
F have to possess a property of mutual transformation
between various kinds of tailored optical fibres. Strip
and cylindrical cores are special cases of elliptical cores, etc.
Part of modal power of m-th mode Pm is carried in the core
Pm
1 , and the other part is in the cladding Pm
2 . The expression
η(r) = P1/Pm, where Pm = P1 + P2 is a modal power
profile η = (neffng − n2
2)/NA2 [51].
In the angular coordinates – longitudinal axial, radial and
azimuthal (z, r, φ;) for a quasi-ideal cylindrical fibre, the wave
functions F are quasi-periodic and quasi-exponential Bessel
functions Jm(u) and Km(w), and the eigenequation
СсылкаПожаловаться
Сеньор Помидор
(cladding) field, F1(u)′ = dF1/du, dF2(w)′ = dF2/dw –
derivatives of wave functions, u2 = a2(k2
1 − β2), w2 =
a2(β2 − k2
2) – arguments of wave functions, k1 = n1ko >
β > k2 = n2ko, ko = 2π/λo – wave numbers, respectively
in the core, cladding and outside the fibre – in vacuum,
β = 2π/λ – modal constant of propagation, λ – modal wavelength
in optical fibre, βn = β/k = neff – normalized propagation
constant, which is an effective modal refractive index,
ω = 2πf, V = u2 + w2 = a2k2
o(n2
1 ͨ2; n2
2) = (akNA)2 –
normalized frequency, (n2
1 − n2
2)1/2 = NA – numerical aperture
of optical fibre, μi – relative magnetic permeability of
i-th region, n1, n2 – refractive indices of the core and the
cladding in the fibre, generally they are not constant but are
functions of radius ni(r) or radius and angle ni(r,), m –
azimuthal modal number in circular and elliptical fibres and
transverse modal number in square and rectangular core fibre,
l – radial modal number.
For m = 1, and a fibre with circular or strip core, the
ideal Eol and Hol modes are not coupled and have only the
mentioned in their names field components in the direction
of propagation. Particular form of Eq. (1), and the kind of
wave functions F depend on the fibre geometry, mainly the
core. We assume that the fibre supports hybrid modes HE,
EH or, in approximation, LP modes of linear polarization [3].
Two expressions in parentheses on the left side of Eq. (1)
represent modes of characteristics combined with magnetic
permeability (without charges on the boundary, Ho1 modes
in cylindrical fibre) and core/cladding refractions. Right side
of the equation couples the modes into a hybrid form of both
fields E and H in the direction of propagation. Wave functions
F have to possess a property of mutual transformation
between various kinds of tailored optical fibres. Strip
and cylindrical cores are special cases of elliptical cores, etc.
Part of modal power of m-th mode Pm is carried in the core
Pm
1 , and the other part is in the cladding Pm
2 . The expression
η(r) = P1/Pm, where Pm = P1 + P2 is a modal power
profile η = (neffng − n2
2)/NA2 [51].
In the angular coordinates – longitudinal axial, radial and
azimuthal (z, r, φ;) for a quasi-ideal cylindrical fibre, the wave
functions F are quasi-periodic and quasi-exponential Bessel
functions Jm(u) and Km(w), and the eigenequation
меньше слов дешевле телеграммаВ ответ на Сеньор Помидор
Сеньор Помидор
(cladding) field, F1(u)′ = dF1/du, dF2(w)′ = dF2/dw –
derivatives of wave functions, u2 = a2(k2
1 − β2), w2 =
a2(β2 − k2
2) – arguments of wave functions, k1 = n1ko >
β > k2 = n2ko, ko = 2π/λo – wave numbers, respectively
in the core, cladding and outside the fibre – in vacuum,
β = 2π/λ – modal constant of propagation, λ – modal wavelength
in optical fibre, βn = β/k = neff – normalized propagation
constant, which is an effective modal refractive index,
ω = 2πf, V = u2 + w2 = a2k2
o(n2
1 ͨ2; n2
2) = (akNA)2 –
normalized frequency, (n2
1 − n2
2)1/2 = NA – numerical aperture
of optical fibre, μi – relative magnetic permeability of
i-th region, n1, n2 – refractive indices of the core and the
cladding in the fibre, generally they are not constant but are
functions of radius ni(r) or radius and angle ni(r,), m –
azimuthal modal number in circular and elliptical fibres and
transverse modal number in square and rectangular core fibre,
l – radial modal number.
For m = 1, and a fibre with circular or strip core, the
ideal Eol and Hol modes are not coupled and have only the
mentioned in their names field components in the direction
of propagation. Particular form of Eq. (1), and the kind of
wave functions F depend on the fibre geometry, mainly the
core. We assume that the fibre supports hybrid modes HE,
EH or, in approximation, LP modes of linear polarization [3].
Two expressions in parentheses on the left side of Eq. (1)
represent modes of characteristics combined with magnetic
permeability (without charges on the boundary, Ho1 modes
in cylindrical fibre) and core/cladding refractions. Right side
of the equation couples the modes into a hybrid form of both
fields E and H in the direction of propagation. Wave functions
F have to possess a property of mutual transformation
between various kinds of tailored optical fibres. Strip
and cylindrical cores are special cases of elliptical cores, etc.
Part of modal power of m-th mode Pm is carried in the core
Pm
1 , and the other part is in the cladding Pm
2 . The expression
η(r) = P1/Pm, where Pm = P1 + P2 is a modal power
profile η = (neffng − n2
2)/NA2 [51].
In the angular coordinates – longitudinal axial, radial and
azimuthal (z, r, φ;) for a quasi-ideal cylindrical fibre, the wave
functions F are quasi-periodic and quasi-exponential Bessel
functions Jm(u) and Km(w), and the eigenequation
СсылкаПожаловаться
Сеньор Помидор
(cladding) field, F1(u)′ = dF1/du, dF2(w)′ = dF2/dw –
derivatives of wave functions, u2 = a2(k2
1 − β2), w2 =
a2(β2 − k2
2) – arguments of wave functions, k1 = n1ko >
β > k2 = n2ko, ko = 2π/λo – wave numbers, respectively
in the core, cladding and outside the fibre – in vacuum,
β = 2π/λ – modal constant of propagation, λ – modal wavelength
in optical fibre, βn = β/k = neff – normalized propagation
constant, which is an effective modal refractive index,
ω = 2πf, V = u2 + w2 = a2k2
o(n2
1 ͨ2; n2
2) = (akNA)2 –
normalized frequency, (n2
1 − n2
2)1/2 = NA – numerical aperture
of optical fibre, μi – relative magnetic permeability of
i-th region, n1, n2 – refractive indices of the core and the
cladding in the fibre, generally they are not constant but are
functions of radius ni(r) or radius and angle ni(r,), m –
azimuthal modal number in circular and elliptical fibres and
transverse modal number in square and rectangular core fibre,
l – radial modal number.
For m = 1, and a fibre with circular or strip core, the
ideal Eol and Hol modes are not coupled and have only the
mentioned in their names field components in the direction
of propagation. Particular form of Eq. (1), and the kind of
wave functions F depend on the fibre geometry, mainly the
core. We assume that the fibre supports hybrid modes HE,
EH or, in approximation, LP modes of linear polarization [3].
Two expressions in parentheses on the left side of Eq. (1)
represent modes of characteristics combined with magnetic
permeability (without charges on the boundary, Ho1 modes
in cylindrical fibre) and core/cladding refractions. Right side
of the equation couples the modes into a hybrid form of both
fields E and H in the direction of propagation. Wave functions
F have to possess a property of mutual transformation
between various kinds of tailored optical fibres. Strip
and cylindrical cores are special cases of elliptical cores, etc.
Part of modal power of m-th mode Pm is carried in the core
Pm
1 , and the other part is in the cladding Pm
2 . The expression
η(r) = P1/Pm, where Pm = P1 + P2 is a modal power
profile η = (neffng − n2
2)/NA2 [51].
In the angular coordinates – longitudinal axial, radial and
azimuthal (z, r, φ;) for a quasi-ideal cylindrical fibre, the wave
functions F are quasi-periodic and quasi-exponential Bessel
functions Jm(u) and Km(w), and the eigenequation
меньше слов дешевле телеграммаВ ответ на Сеньор Помидор
Сеньор Помидор
(cladding) field, F1(u)′ = dF1/du, dF2(w)′ = dF2/dw –
derivatives of wave functions, u2 = a2(k2
1 − β2), w2 =
a2(β2 − k2
2) – arguments of wave functions, k1 = n1ko >
β > k2 = n2ko, ko = 2π/λo – wave numbers, respectively
in the core, cladding and outside the fibre – in vacuum,
β = 2π/λ – modal constant of propagation, λ – modal wavelength
in optical fibre, βn = β/k = neff – normalized propagation
constant, which is an effective modal refractive index,
ω = 2πf, V = u2 + w2 = a2k2
o(n2
1 ͨ2; n2
2) = (akNA)2 –
normalized frequency, (n2
1 − n2
2)1/2 = NA – numerical aperture
of optical fibre, μi – relative magnetic permeability of
i-th region, n1, n2 – refractive indices of the core and the
cladding in the fibre, generally they are not constant but are
functions of radius ni(r) or radius and angle ni(r,), m –
azimuthal modal number in circular and elliptical fibres and
transverse modal number in square and rectangular core fibre,
l – radial modal number.
For m = 1, and a fibre with circular or strip core, the
ideal Eol and Hol modes are not coupled and have only the
mentioned in their names field components in the direction
of propagation. Particular form of Eq. (1), and the kind of
wave functions F depend on the fibre geometry, mainly the
core. We assume that the fibre supports hybrid modes HE,
EH or, in approximation, LP modes of linear polarization [3].
Two expressions in parentheses on the left side of Eq. (1)
represent modes of characteristics combined with magnetic
permeability (without charges on the boundary, Ho1 modes
in cylindrical fibre) and core/cladding refractions. Right side
of the equation couples the modes into a hybrid form of both
fields E and H in the direction of propagation. Wave functions
F have to possess a property of mutual transformation
between various kinds of tailored optical fibres. Strip
and cylindrical cores are special cases of elliptical cores, etc.
Part of modal power of m-th mode Pm is carried in the core
Pm
1 , and the other part is in the cladding Pm
2 . The expression
η(r) = P1/Pm, where Pm = P1 + P2 is a modal power
profile η = (neffng − n2
2)/NA2 [51].
In the angular coordinates – longitudinal axial, radial and
azimuthal (z, r, φ;) for a quasi-ideal cylindrical fibre, the wave
functions F are quasi-periodic and quasi-exponential Bessel
functions Jm(u) and Km(w), and the eigenequation
СсылкаПожаловаться
Сеньор Помидор
(cladding) field, F1(u)′ = dF1/du, dF2(w)′ = dF2/dw –
derivatives of wave functions, u2 = a2(k2
1 − β2), w2 =
a2(β2 − k2
2) – arguments of wave functions, k1 = n1ko >
β > k2 = n2ko, ko = 2π/λo – wave numbers, respectively
in the core, cladding and outside the fibre – in vacuum,
β = 2π/λ – modal constant of propagation, λ – modal wavelength
in optical fibre, βn = β/k = neff – normalized propagation
constant, which is an effective modal refractive index,
ω = 2πf, V = u2 + w2 = a2k2
o(n2
1 ͨ2; n2
2) = (akNA)2 –
normalized frequency, (n2
1 − n2
2)1/2 = NA – numerical aperture
of optical fibre, μi – relative magnetic permeability of
i-th region, n1, n2 – refractive indices of the core and the
cladding in the fibre, generally they are not constant but are
functions of radius ni(r) or radius and angle ni(r,), m –
azimuthal modal number in circular and elliptical fibres and
transverse modal number in square and rectangular core fibre,
l – radial modal number.
For m = 1, and a fibre with circular or strip core, the
ideal Eol and Hol modes are not coupled and have only the
mentioned in their names field components in the direction
of propagation. Particular form of Eq. (1), and the kind of
wave functions F depend on the fibre geometry, mainly the
core. We assume that the fibre supports hybrid modes HE,
EH or, in approximation, LP modes of linear polarization [3].
Two expressions in parentheses on the left side of Eq. (1)
represent modes of characteristics combined with magnetic
permeability (without charges on the boundary, Ho1 modes
in cylindrical fibre) and core/cladding refractions. Right side
of the equation couples the modes into a hybrid form of both
fields E and H in the direction of propagation. Wave functions
F have to possess a property of mutual transformation
between various kinds of tailored optical fibres. Strip
and cylindrical cores are special cases of elliptical cores, etc.
Part of modal power of m-th mode Pm is carried in the core
Pm
1 , and the other part is in the cladding Pm
2 . The expression
η(r) = P1/Pm, where Pm = P1 + P2 is a modal power
profile η = (neffng − n2
2)/NA2 [51].
In the angular coordinates – longitudinal axial, radial and
azimuthal (z, r, φ;) for a quasi-ideal cylindrical fibre, the wave
functions F are quasi-periodic and quasi-exponential Bessel
functions Jm(u) and Km(w), and the eigenequation
меньше слов дешевле телеграммаВ ответ на Сеньор Помидор
Сеньор Помидор
(cladding) field, F1(u)′ = dF1/du, dF2(w)′ = dF2/dw –
derivatives of wave functions, u2 = a2(k2
1 − β2), w2 =
a2(β2 − k2
2) – arguments of wave functions, k1 = n1ko >
β > k2 = n2ko, ko = 2π/λo – wave numbers, respectively
in the core, cladding and outside the fibre – in vacuum,
β = 2π/λ – modal constant of propagation, λ – modal wavelength
in optical fibre, βn = β/k = neff – normalized propagation
constant, which is an effective modal refractive index,
ω = 2πf, V = u2 + w2 = a2k2
o(n2
1 ͨ2; n2
2) = (akNA)2 –
normalized frequency, (n2
1 − n2
2)1/2 = NA – numerical aperture
of optical fibre, μi – relative magnetic permeability of
i-th region, n1, n2 – refractive indices of the core and the
cladding in the fibre, generally they are not constant but are
functions of radius ni(r) or radius and angle ni(r,), m –
azimuthal modal number in circular and elliptical fibres and
transverse modal number in square and rectangular core fibre,
l – radial modal number.
For m = 1, and a fibre with circular or strip core, the
ideal Eol and Hol modes are not coupled and have only the
mentioned in their names field components in the direction
of propagation. Particular form of Eq. (1), and the kind of
wave functions F depend on the fibre geometry, mainly the
core. We assume that the fibre supports hybrid modes HE,
EH or, in approximation, LP modes of linear polarization [3].
Two expressions in parentheses on the left side of Eq. (1)
represent modes of characteristics combined with magnetic
permeability (without charges on the boundary, Ho1 modes
in cylindrical fibre) and core/cladding refractions. Right side
of the equation couples the modes into a hybrid form of both
fields E and H in the direction of propagation. Wave functions
F have to possess a property of mutual transformation
between various kinds of tailored optical fibres. Strip
and cylindrical cores are special cases of elliptical cores, etc.
Part of modal power of m-th mode Pm is carried in the core
Pm
1 , and the other part is in the cladding Pm
2 . The expression
η(r) = P1/Pm, where Pm = P1 + P2 is a modal power
profile η = (neffng − n2
2)/NA2 [51].
In the angular coordinates – longitudinal axial, radial and
azimuthal (z, r, φ;) for a quasi-ideal cylindrical fibre, the wave
functions F are quasi-periodic and quasi-exponential Bessel
functions Jm(u) and Km(w), and the eigenequation
СсылкаПожаловаться
Жалоба отправленаОтменить
Бельевые тренды, которые помогут почувствовать себя женственно и роскошно
Как выглядят и чем занимаются знаменитые российские гимнастки после окончания спортивной карьеры
Готовимся к отпуску: что никогда нельзя надевать в самолет
Скинни, брюки и черный: новый стиль 69-летней Брижит Макрон
15 идей для празднования Пасхи: убираем, готовим, украшаем